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We investigate condensation phase transitions of the symmetric conserved-mass aggregation (SCA) model
on random networks (RNs) and scale-free networks (SFNs) with degree distribution P(k) ~k~?. In the SCA
model, masses diffuse with unit rate, and unit mass chips off from mass with rate w. The dynamics conserves
total mass density p. In the steady state, on RNs and SFNs with y>3 for w # %, we numerically show that the
SCA model undergoes the same type of condensation transitions as those on regular lattices. However, the
critical line p.(w) depends on network structures. On SFNs with y=<3, the fluid phase of exponential mass
distribution completely disappears and no phase transitions occurs. Instead, the condensation with exponen-
tially decaying background mass distribution always takes place for any nonzero density. For the existence
of the condensed phase for y<3 at the zero density limit, we investigate one lamb-lion problem on RNs
and SFNs. We numerically show that a lamb survives indefinitely with finite survival probability on RNs and
SFNs with y>3, and dies out exponentially on SFNs with y=<3. The finite lifetime of a lamb on SFNs with
y=3 ensures the existence of the condensation at the zero density limit on SFNs with y=<3, at which direct
numerical simulations are practically impossible. At w=02, we numerically confirm that complete condensation
takes place for any p>0 on RNs. Together with the recent study on SFNs, the complete condensation always

occurs on both RNs and SFNs in zero range process with constant hopping rate.
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I. INTRODUCTION

Nonequilibrium condensation phase transitions from fluid
phase into condensed phase have been observed in a variety
of phenomena ranging from traffic flow to polymer gels
[1-13]. In the steady state, a finite fraction of total particles
condenses on a single site in the condensed phase when the
total particle density p is increased beyond a certain critical
value p,.. In the fluid phase below p,, the particle number of
each site fluctuates around p without the condensation.

Various kinds of nonequilibrium mass transport models
exhibit the condensation transitions or only condensation.
The simplest and well-known model is the zero-range pro-
cess (ZRP) in one dimension [1]. In ZRP, many identical
particles occupy sites on a lattice. Each site may contain an
integer number of particles and one of these particles can hop
to one of the nearest-neighboring sites with a rate that de-
pends on the number of particles at the site of departure. The
chipping (single-particle dissociation) and aggregation pro-
cesses of ZRP describe various condensations, such as jam-
ming of traffic [2], bunching of buses [3], coalescence of
shaken steel balls [4], and condensation of edges in networks
[5]. Recent studies of ZRP on scale-free [6] and directed
networks [7] reveal the conditions under which condensation
takes place.

Another important class of condensation transitions
emerges when the diffusion of the whole particles of a single
site is involved in addition to the chipping and aggregation.
These processes arise in a variety of phenomena such as
polymer gels [8], the formation of colloidal suspensions [9],
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river networks [10,11], and clouds [12]. The recently studied
conserved-mass aggregation (CA) model is the simplest one
incorporating diffusion, chipping, and aggregation upon con-
tact [13,14]. In the one-dimensional CA model, the mass m;
of site i moves either to site i—1 or to site i+ 1 with unit rate,
and then m;— 0 and m;.; — m;,;+m;. With rate w, unit mass
chips off from site i and moves to one of the nearest-
neighboring sites; m;—m;—1 and m;,;—m;,;+1. As total
masses are conserved, the conserved density p and w deter-
mine the phase of the CA model. The condensation transition
arises via the competition between diffusion and chipping
processes. The diffusion of masses tends to produce massive
aggregates and consequently creates more vacant sites. The
chipping of unit mass tends to prevent the formation of ag-
gregates, so that it leads to a replenishment of the lower end
of mass distribution.

The single site mass distribution P(m), i.e., the probability
that a site has mass m in the steady state, was shown to
undergo phase transitions on regular lattices [13]. For a fixed
w, as p is varied across the critical value p.(w), the behavior
of P(m) for large m was found to be [13]

e p < p.w)
P(m) ~\m™7, p=pw) (1)

m~" + infinite aggregate, p > p.(w),

where p, is given as p(w)=Vw+1-1. p, and 7 are shown to
be independent of spatial dimension d [14]. The tail of the
mass distribution changes from exponential to an algebraic
decay as p approaches p, from below. As one further in-
creases p beyond p,., this asymptotic algebraic part of the
critical distribution remains unchanged, but in addition an
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infinite aggregate forms. This means that all the additional
mass (p—p,)L? condenses onto a single site and does not
disturb the background critical distribution. The w=% case
corresponds to ZRP with constant chipping rate, and then
there is no condensation transitions on regular lattices. The
critical exponent 7 is the same everywhere on the critical line
p.(w). Recent studies showed that 7 depends on the symme-
try of movement and constraints of diffusion rate [15,16]. In
what follows, we only consider the symmetric CA (SCA)
model, where diffusion and chipping directions are unbiased
[13].

As mean-field theory correctly predicts the phase diagram
and 7 of the SCA model in one dimension [13], the nature of
the condensation transitions should remain unchanged in any
higher dimensions. However, recent studies of various dy-
namics on network structures showed that the structure of
networks leads to more rich and intriguing behavior different
from that predicted by the standard mean-field theory on
regular lattices [5,6,17]. For example, ZRP on SFNs was
shown to exhibit condensation even at constant hopping rate,
which is the case of an infinite chipping rate of the SCA
model [6].

In this paper, we investigate the effect of network struc-
tures on the condensation transitions of the SCA model using
random networks (RNs) and scale-free networks (SFNs). As
we shall see, on RNs and SFNs with the degree exponent
y>3, the SCA model undergoes the same type of condensa-
tion transitions as those in a regular lattice across a critical
line p.(w) in the p-w plane with the exponent 7=5/2. How-
ever, on SFNs with y<3 where one or several nodes, so-
called hub nodes, have a finite fraction of links, the fluid
phase completely disappears and the condensation with ex-
ponentially decaying background mass distribution takes
place for any nonzero density. The outline of this paper is as
follows. In Sec. II, we introduce the SCA model on complex
networks. The condensation transitions on RNs and SFNs are
discussed in Secs. III and IV. To understand the condensation
on SFNs with y=3, we discuss lamb-lion problems on SFNs
in Sec. V. In Secs. VI and VII, we discuss the SCA model at
w=02 and the effect of diffusion of masses on average mass
distribution on degrees, respectively. Finally, we summarize
our results in Sec. VIIL

II. SCA MODEL ON NETWORKS

We consider a network with N nodes and K links. The
degree k; of a node i is defined as the number of its links
connected to other nodes. The average degree of a node (k) is
given as (k)=2K/N. The degree distribution P(k) is a Pois-
son distribution for RNs and a power-law distribution of
P(k)~ k™" for SFNs. Each node may have an integer number
of particles, and the mass of a node is defined as the number
of particles at the node. Initially M particles randomly dis-
tribute on N nodes with given conserved density p=M/N.
Next a node i is chosen at random and one of the following
events occurred:

(i) Diffusion: With unit rate, the mass m; moves to the
randomly selected nearest-neighboring node j. If the node
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FIG. 1. P(m,t) of m=1 and 10 for p=0.2 and w=1 on networks
of N=10*. Each panel corresponds to RN (a), SEN with y=4.3 (b),
and y=2.4 (c). The vertical dotted line denotes the characteristic
time 7,,.

J already has mass m;, then the aggregation takes place;
m;—0 and m;— m;+m;.

(ii) Chipping: With rate w, unit mass (a single particle) at
node i chips off and moves to the randomly selected nearest-
neighboring node j; m;—m;—1 and m;—m;+1.

As mentioned in Sec. I, diffusion and chipping processes
compete with each other so a condensation transition physi-
cally depends on two external parameters p and w. At w=0,
however, only diffusion and aggregation take place so
masses always condense onto a single site (complete conden-
sation). On the other hand, the w=% case corresponds to
ZRP with constant chipping rate. It was shown that ZRP on
scale-free networks exhibits complete condensation when the
mass-dependent chipping rate u(m) is given as u(m)~m?,
but < §,, where 8, is some threshold value [6]. Hence the
SCA model of w=% is just the 6=0 case of ZRP so the
complete condensation always arises at w=%. As we shall
see in the following section, the complete condensation for
ZRP also takes place on random networks at p>0.

For the construction of SFN, we use a static model [18]
instead of preferential attachment algorithm [5]. In the static
model, it is desired to use large (k) to construct fully con-

nected networks. In simulations, we use {(k)=4.

III. SCA MODEL ON RNs AND SFNs WITH y>3

We consider the SCA model on RNs and SFNs with
¥>3 having nodes N=10* and links K=2X 10* for w # .
We define the single-node mass distribution P(m, ) at time ¢,
i.e., the probability that a node has mass m at t as
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FIG. 2. P(m) on RN (a) and SFN with y=4.3 (b) at @=1.0. In
each panel, the solid and the dashed line correspond to P(m)
of p=3.0 (condensed phase) and 0.2 (fluid phase), respectively.
The inset in each panel shows the effective exponent
(m){=-In[P(bm)/P(m)]/1n b}.

N
1 1
Plm.1) = —n(m.0) = K% S (1 (2)

where n(m,t) is the number of nodes with mass m at time ¢
and m;,(r) is the mass of node i at 7. From the conservation of
total masses and the normalization condition of P(m,?), i.e.,
>,,P(m,)=1, all P(m,t) are expected to reach the stationary
state at the same time. For instance, let P(m,,f) reach the
steady state at time 7,. Then P(m,)[=P(m,,t>7,)] is given
as P(m,)=1-2,,., P(m,t) after 1= 7,. The sum is constant,
and each P(m,1) in the sum is also expected to be a constant.
Otherwise, for example, the time dependence of P(m,%1,1)
in the sum would lead to the change of P(m,,?) in time. If
P(m,—1,1) is in the steady state, then P(m,—2,1) is also in
the steady state. Since all masses are correlated in this hier-
archical manner due to the conservation of total masses, the
time dependence of any P(m,t) would lead to the change of
the sum in time. So the characteristic time 7, at which
P(m,t) saturates is expected to be independent of mass m,
and

= 7-111* > (3)

where m” is the maximal mass. In Fig. 1, we plot P(m,t) of
m=1 and 10 for w=1.0 and p=0.2 on various networks. The
vertical dotted line denotes the characteristic time 7,,, which
supports Eq. (3). We also check P(m,t) of various masses up
to m=300, and find that all P(m,t) reach the steady state
nearly at the same time.

We measure the steady-state distribution P(m) by averag-
ing P(m,1) after 7,,. Figure 2 shows the plots of P(m) versus
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FIG. 3. The p-w phase diagram of RN (a) and SFN with
y=4.3 (b). In each panel, the solid line is the critical line of
pe(w)=Vo+1-1 on regular lattices of Ref. [13]. The dotted line
between data points is a guide to the eye. The dashed line denotes
w=2> line.

m for RN and SFN with y=4.3 with w=1.0. We estimate the
critical density p, as p.(w=1)=0.31(3) for RN and 0.24(3)
for SFN with y=4.3, respectively, by examining when the
condensation disappears. In fluid phase (p<<p,), P(m) expo-
nentially decays for large mass in both RN and SFN with
v=4.3. For the condensed phase (p=p,), P(m) algebraically
decays on both RN and SFN with y=4.3 as P(m)~m™" with
one common 7. For the estimate of 7, we investigate the
effective exponent 7(m) defined by 7(m)=-In[P(bm)
/P(m)]/Inb with b=2 at p=3.0 (Fig. 2). We estimate
7=2.40(4) for RN from 7(m) for the range 17 <m <46 in the
inset of Fig. 1(a). Similarly, we find 7=2.32(5) for SEN with
v=4.3 from 7(m) for the range 18<m=<45 in the inset of
Fig. 2(b). The numerical value in the one-dimensional lattice
has been reported as 7=2.33(2) [13]. Hence the values of 7
for both networks also reasonably agree with 7=5/2 of regu-
lar lattices [13,14]. In condensed phase (p=3.0>p,), the ac-
cess mass of (p—p,)N=2.7 X 10* condenses on a single node
in both networks without changing the background critical
distribution. To map out phase diagrams for RN and SFN
with y=4.3, we measure p. and 7 for w=0.1,1.0, and 10, and
find that 7 is the same within error on the critical line. Figure
3 shows the phase diagrams of RN and SEN with y=4.3. The
solid line denotes the critical line, p,=\w+1—1, of regular
lattices [13]. On regular lattices, the p.(w) is independent of
dimensionality. However on networks, p.(w) depends on the
underlying network structures. We also confirm that SFN
with y=3.5 undergoes the same type of condensation transi-
tions. Therefore, we conclude that the SCA model on RNs
and SFNs with y>3 undergoes the same type of condensa-
tion transitions from fluid phase into condensed phase for
0<w<® as those on a one-dimensional regular lattice.
However, the critical line depends on the underlying network
structures [20,21].

IV. SCA MODEL ON SFN WITH 2<y=<3

For w# %, we perform simulations on SFNs with y=2.4
and 3 with N=10* nodes and K=2X10* links. We plot
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FIG. 4. P(m) on SFN with y=3 (a) and y=2.4 (b) at ®=1.0. In
each panel, the solid and the dashed line correspond to P(m) of
p=3.0 and 0.2, respectively. (c) The typical phase diagram of SFNs
with y=3. The dashed line denotes the line of w=0°.

P(m,t) of y=2.4 in Fig. 1(c) for example, and average
P(m,t) after 7,, for the steady state P(m). As mentioned in
the previous section, 7, is the same for all masses.

The mass distribution P(m) for y=<3 shows quite differ-
ent behavior from that for y>3. Figure 4 shows P(m) on
SFENs with y=2.4 and 3 for p=0.2 and 3.0 with w=1. As in
the condensed phase of RNs and SFNs with y> 3, there is a
condensation of mass m" =~ pN. However, P(m) exponen-
tially decays for large m rather than power-law. We also mea-
sure P(m) for various w and p, and confirm the same behav-
ior of P(m). Therefore, we conclude that for w# ©, SCA on
SFNs with y=3 exhibits an infinite aggregation with an ex-
ponential background mass distribution. We call this phase
the incomplete condensed phase to reflect exponential mass
distributions [Fig. 4(c)]. Intriguingly, the two features of the
fluid and the condensed phase on a regular lattice coexist on
SFNs with y=<3. Such a behavior was found in the lattice
gas model proposed to describe the distribution of droplets in
the fragmentation process following a nuclear collision [22].

The nonexistence of the fluid phase for y=<3 mainly
comes from the hub structure of SFNs with y=<3 where one
or several nodes have a finite fraction of total links [5]. Due
to the hub structure, all masses move to a hub node by both
diffusion and chipping processes, unlike SFNs with y>3
where the chipping tends to split masses and prevents aggre-
gations. Hence there are no processes to prevent the forma-
tion of infinite aggregation for y<3. The difference from
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ZRP is that the diffusion process moves an infinite aggrega-
tion of mass my,, at a hub node to the others. Then the
chipping distributes small masses of m,,;, onto neighboring
nodes. In this way, nodes with small degree can have mass so
the resultant P(m) is exponential.

Recently, another aggregation-chipping model was stud-
ied in which there is no translational invariance [27]. In the
model, at any site except origin, all the mass at that site
moves as a whole to one of the nearest-neighboring sites
with rate 1 and it coalesces with the mass already presents on
the neighboring site instantaneously. At the origin, only a
single monomer chips off at rate w leaving the rest of the
mass behind. For isotropic chipping, the system is in the
so-called unpinned aggregate (UA) phase where more than
one infinite aggregate coexist. One infinite aggregate pre-
sents at the origin and the others move around bulk sites.
However, the aggregate at the origin can disintegrate and
re-form due to the nonzero probability of zero mass at the
origin. Hence the origin is occupied only for a finite fraction
of time by an infinite aggregate [27]. However, in the SCA
model on SFNs with y=3, the condensation occurs due to
the strong inhomogeneity of networks, i.e., hub structure.
Once the condensate is formed at a hub, it moves around by
the diffusion process, as we shall show in Fig. 6(b). By chip-
ping process, the moving condensate may lose masses, but it
gains masses at a hub again. Hence the disintegration and the
finite occupation time are not expected in SFN with y=<3.

It is hard to show the existence of infinite aggregation for
the limit of p— 0 numerically with finite-size networks. In-
stead we investigate annihilating random walks of two par-
ticles on SFNs (lamb-lion problem) for the condition of the
existence of the fluid phase on SFNs. For the p— 0 limit, we
assume an infinite aggregation and neglect the presence of
other masses. Then unit mass chips off from the aggregation,
and diffuses around on the networks. For the existence of an
infinite condensate in the steady state, the two masses should
aggregate again in the finite-time interval. If not, unit mass
continuously chips off from the infinite aggregation, which
will finally disappear. Hence if the unit mass (lamb) survives
indefinitely without meeting the infinite aggregation (lion),
then the fluid phase exists at the zero density limit. Other-
wise, the condensed phase exists for any p>0. In the next
section, we investigate a lamb-lion problem on RNs and
SENS.

V. LAMB-LION PROBLEM ON NETWORKS

We consider one lamb and one lion problem on networks.
If a lamb meets a lion on the same node, then it dies. Hence
the interesting quantity is the survival probability S(¢) of a
lamb at time ¢. On a d-dimensional regular lattice, S(¢) de-
pends on d as follows [23-26]:

1421 ford <2,
S(t) ~yUVInt ford=2, (4)
const for d>2.

On networks, the steady-state distribution of a random
walker is proportional to the degree k; of node i [19] as
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FIG. 5. Semilog plot of the survival probability S(f) on SFN
with y=4.3 (a) and 2.4 (b) of various size N up to 10°. (c) The
average lifetime 7 on RN and SFN with y=4.3. (d) T on SFNs with
y=<3. The solid line between data points is a guide to the eye.

PY=ki X k. (5)

Hence the probability of finding two walkers at the same
node should depend on the second moment (k). While (k%)
is finite for RNs and SFNs with y>3, it diverges for SFNs
with y=<3. So RNs and SFNs with y>3 correspond to an
infinite dimensional homogeneous regular lattice in macro-
scopic scale, while SFNs with y=<3 are generically inhomo-
geneous. Therefore, S(r) is expected to be constant in the
thermodynamic limit on RNs and SFNs with y>3. It means
the existence of the fluid phase for the limit of p=0 for any
o # % as shown in Fig. 3. On the other hand, for the incom-
plete condensed phase of y=<3, S(r) should decay to zero for
y=<3.

We measure S(¢) of a lamb on RNs and SFNs with various
v for several values of N from 10° to 10° and up to 10° time
steps. Initially a lamb and a lion are placed on two randomly
selected nodes. In Fig. 5, we plot S(z) for y=4.3 (a) and 2.4
(b) for various system size N. Interestingly S(¢) decays ex-
ponentially in both SFNs for any N. For example, S(z) of
y=4.3 and N=10° exponentially decays with very large char-
acteristic time 7 order of 10° over the whole time interval.
We also confirm the same exponential decay of S(z) on RNs
for any N. Unlike on regular lattices where the exponential
decay of S(r) comes from the finite-size effect of lattices, S(z)
on networks shows such an exponential decay at very early
time. The exponential decay of S(¢) mainly comes from the
small world nature of networks [5], i.e., the average path
length between a pair of nodes increases logarithmically with
N. As S(t) shows the exponential decay for any vy, we are
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interested in the average lifetime T of a lamb rather than S(z)
itself.

We measure the lifetime 7 of a lamb on RNs and SFNs
with several 7y values for N up to 10° and plot 7 against N in
Figs. 5(c) and 5(d). In Fig. 5(c), T linearly increases with N
for both RN and SFN with y=4.3. Assuming 7T~ N¢, we
estimate a=1.0(2) for RN and SFN with y=4.3 by measur-
ing slopes. However, for y<<3 of Fig. 5(d), T exhibits quite
different behavior. T of y=2.15 and 2.4 tend to saturate to
some asymptotic value with decreasing successive slopes.
However, the characteristic size N,(y) at which T begins to
saturate increases as <y approaches y=3. For example, T of
y=2.75 seems to algebraically increase up to N=10°. It
means that N, of y=2.75 is already larger than 10°. To see
the saturation at y=2.75, big size N much larger than 10° is
needed but it is practically very difficult. It is hard to believe
that T diverges in power-law fashion as vy approaches 3 be-
cause T of small y has already begun to saturate at moderate
N order of 10°~ 10°. Hence T of y<3 is expected to saturate
to its asymptotic value even though we cannot see the satu-
ration via simulations as vy approaches 3 from below. At
y=3, T also increases algebraically with N. By measuring
successive slopes, we estimate a=0.85(1) for y=3. How-
ever, as the exponent « continuously varies as 7y increases to
3, the value of a at y=3 may have no special meaning. As
shown in Fig. 4(a) for y=3, the condensation already occurs
at sufficiently low density p=0.2 even for small size N
=10* So T of y=3 is believed to saturate in the thermody-
namic limit as for y=2.75. Therefore, we are convinced that
the lifetime of a lamb is finite in the thermodynamic limit
N—o for y=<3. From the behavior of the lifetime 7, the
asymptotic behavior of S(¢) is investigated in the following.

As shown in Fig. 5(a), S(r) decays exponentially as S(7)
=S,e”"". From the definition of T=[J{-dS(t)/dt]dt, we
have T~ 7. Hence 7 diverges linearly on SFNs with y>3
and RNs, while it saturates for y=<3. The scaling behavior of
7 means that S(rf) on RNs and SFNs with y>3 is nonzero
constant in the limit N— o, and exponentially decays to zero
on SFNs with y<3. Hence we have

{Soe"”m (y<3)

lim S(N,?) =
mSNO=1g (43,

N—so0

(6)

where 7., is the asymptotic value of 7, and depends on . As
S(r) decays exponentially to zero for y<3, two particles
initially located on the same node should meet or aggregate
within a finite time interval. Hence the finite lifetime on
SENs with y=<3 supports the numerically expected con-
densed phase for any p>0 on SFNs with 2= y=<3 as men-
tioned in the previous section. On the other hand, the finite
S.. on RNs and SFNs with y>3 implies the existence of the
fluid phase in the limit p— 0, which is also consistent with
the phase diagrams of Fig. 3.

VI. SCA MODEL AT w=

At w=%, the SCA model corresponds to ZRP with con-
stant hopping rate on networks. On SFNs with y>2, it was
shown that ZRP undergoes complete condensation for any
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FIG. 6. (a) The main plot shows m, of Eq. (10) for p=3.0 and
w=1 on RN, SEN with y=4.3 and 2.4 in condensed phase. The
inset shows my; at w=% on RN. (b) M of a single sample on SFN
with y=2.4 at different times for p=3 and w=1 of the condensed
phase. The main plot only shows the maximum mass m" of M, of a
single sample at different time steps, and the inset shows the snap-
shot of the M, at t=4 X 10°.

p>0 [6]. In condensation phenomena of ZRP on SFNs, the
average mass at a node with degree k, m, in the steady state
exhibits a discontinuous jump at a hub node. In ZRP with
constant chipping rate, for example, m, linearly increase un-
til k <k, and jumps to the value m" = pN at k=ky;, [6]. The
ko 18 the degree of the hub node which has the largest
number of links.

To see whether the condensation occurs on RNs in ZRP,
we measure m;, for p=0.4 and 3.0 on RNs with N=10* As
shown in the bottom inset of Fig. 6(a), m, increases linearly
in k and finally jumps at &y, as in ZRP on SFNs. For a fixed
N, the mass of ky,, my,, decreases as p goes to zero, as
shown in the inset of Fig. 6(a). So it is hard to observe the
condensation at low density for small N. Since the complete
condensation of ZRP on networks mainly comes from the
inhomogeneity of degree distribution rather than the compe-
tition between dynamical processes, ZRP on RNs should ex-
hibit the complete condensation for any p>0 as on SFNs. At
w=2%, we also measure m; on SFNs with y=<3 and confirm
the complete condensation as shown in Ref. [6]. Together
with the recent study on SFNs [6], the complete condensa-
tion always occurs on both RNs and SFNs in the zero range
process with constant hopping rate.

The discontinuity of m;, clearly comes from the nature of
the chipping process of unit mass. That is, unit mass hops
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around according to the steady-state distribution of Eq. (5),
and then there is enough net particle current into the hub
nodes to form infinite aggregation. However, when the dif-
fusion of the whole mass of each node turns on, the aggre-
gation at the hub node diffuses around all nodes. The diffu-
sion of the condensate completely changes the behavior of
m; in the condensed phase of finite w. m; linearly increases
up to ky,, without any jump in the condensed phase of w
# 0. In the next section, we numerically and analytically
confirm the linearity of m, in k.

VII. AVERAGE MASS OF A NODE WITH DEGREE k

Another interesting quantity in condensation phenomena
on networks is the average mass at a node with degree k, m;,
in the steady state. In ZRP with chipping rate u(m)~m® on
SFNs [6], the complete condensation takes place for §< 6,
=1/(y-1). For §<§,, my linearly increases with k for k
<k,, and algebraically increases as k'/° for k= k.. Especially
at 6=0, my linearly increases until k <k, and jumps to the
value m" = pN. The ky,;, is the degree of the hub node which
has the largest number of links. The same type of behavior
on RN for o= is shown in the inset of Fig. 6(a).

In the SCA model, as all masses can perform random
walks according to the steady-state distribution P} of Eq. (5),
one can expect the jump of m;, at ky;, in the condensed phase
for w# © in the SCA model as in ZRP. However, as shown
in the main plot of Fig. 6(a), m, increases linearly in k up to
kb and there is no jump, unlike in ZRP. In Fig. 6(a), we plot
my versus k for p=3.0 and w=1.0, which corresponds to the
condensed phase of both RN and SFN with y=4.3. We also
measure my in the fluid phase (p=0.2,w=1.0) of both net-
works (not shown), and confirm m;~k without any jumps.
For SFN with y=2.4, m,; also shows the linearity in k for
p=3.0,w=1.0. Our simulation results imply that the relation
my~k is valid for any p>0 in RNs and SFNs with y=2 for
finite diffusion rate. The diffusion of masses indeed results in
the linearity of my, in k for any w # <.

In the steady state, as masses can perform random walks
with a finite rate, the mass of a hub node (my,,) diffuses to
different nodes with the probability of being at node i given
as Eq. (5) [19]. The inset of Fig. 6(b) shows the snapshot of
the mass distribution of nodes with degree k for a single
sample at time =4 X 10° on SFN with y=2.4 for p=3.0 and
w=1.0. As shown, there is a peak which may be formed at
ki as in ZRP. However, the peak of mass m" is not always
located at ky,;, but diffuse around nodes according to P} [Fig.
6(b)]. Hence by taking the average, the peak soaks into the
average mass my, unlike in ZRP where all samples have the
peak at k. To see this more explicitly, we derive the rela-
tion, my, ~ k, based on the assumption that the diffusion (the
random walks of masses) is the only relevant physical factor
to decide P(m) in the steady state.

First, we consider the average total mass M, of nodes
with degree k defined as

M, = > mP.(m,k), (7)

m=0

where P (m,k) is the probability of finding a random walker
with mass m at degree k in the steady state. As mass distri-
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bution P(m) in the steady state is independent of k, we have
P..(m,k)=P(m)P;. P{ is the probability of finding a random
walker at a node with degree k on the network. Then using
P? of Eq. (5), we write P; as

N
- 0 kNP(k)
Pk=2Pi5ki,k= (8)

i=1 EN k.

j=1"7

where P(k) is a degree distribution. From Egs. (7) and (8),
we have

NP || <
M= P(m) |. 9

So M;=mkP(k)/{k)~kP(k). Then the average mass of a
node with degree k is given as

M
my=———~kIN. (10)
NP(k)
As expected, m,, scales as m;~k for any degree distribution
P(k). As Eq. (10) is valid for any density p>0, m; does not
undergo the condensation transitions, unlike P(m) of Eq. (1).
Therefore, the steady-state distribution of m; is determined

by diffusion of masses rather than chipping of unit mass,
unlike in ZRP.

VIII. SUMMARY

We investigate the condensation phase transitions of the
symmetric conserved-mass aggregation (SCA) model on net-
works. In the SCA model, masses diffuse with unit rate, and
unit mass chips off from mass with rate w. The SCA model
undergoes condensation phase transitions via the competition
between diffusion and chipping processes [13].

First we consider the w# % case. On random and scale-
free networks of y>3, the SCA model undergoes the same
type of condensation transitions from fluid phase into con-
densed phase as in the one-dimensional lattice of Ref. [13].
However, unlike on regular lattices, the critical line on the
networks depends on the network structures. On the other
hand, on scale-free networks of y=<3 where one or several
nodes have a finite fraction of degrees, an infinite aggrega-
tion with exponentially decaying background mass distribu-
tion always takes place for any nonzero density, so no phase
transitions occur for w# %. The condensation and exponen-
tial mass distribution of small masses come from the generic
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inhomogeneity of network structure of SFNs with y=<3.
However, we are not able to numerically show the existence
of the condensation phase at the zero density limit for y
<3 due to the small world nature of networks [5]. Instead,
we numerically study the survival probability of particle in
pair annihilating random walks, the so-called one lamb and
one lion problem on networks.

For the formation of an infinite aggregation of masses at
the zero density limit, unit mass chipped off from the infinite
aggregation should aggregate again with the aggregation
within the finite time interval. We numerically show that in
the thermodynamic limit, the survival probability S(7) of a
Jlamb (unit mass) is finite on random networks and scale-free
networks (SFNs) with y>3, but exponentially decays to
zero with finite lifetime on SFNs with y=<3. Based on the
finite lifetime of a lamb on SFNs with y=<3, we indirectly
confirm the incomplete condensed phase for any p>0 on
SFNs with y=<3.

At w=, the SCA model corresponds to the zero-range
process (ZRP) with constant chipping rate [1]. ZRP with
constant chipping rate on SFNs was shown to exhibit com-
plete condensation [6]. We also numerically show that the
complete condensation takes place for any p>0 on random
networks by measuring the average mass of a node with
degree k. Hence the complete condensation always takes
place for any nonzero density in ZRP with constant chipping
rate on random and scale-free networks.

Finally, we investigate the behavior of the average mass
of a node with degree k, m; in the fluid and the condensed
phase. In ZRP with constant chipping rate, m; linearly in-
creases with degree k, and jumps to the total mass of the
system at hub degree k,, [6]. Hence in the SCA model, m, is
expected to show such a jump in the condensed phase for
o # . However, m, linearly increases up to ky,, without
jumps in both the fluid and the condensed phase. We numeri-
cally confirm the linearity of m;, and also analytically show
my ~ k with the assumption that the diffusion is the only rel-
evant factor in the steady state. Therefore, the steady-state
distribution of m,, is determined by diffusion of masses rather
than chipping of unit mass, unlike in ZRP.
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